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Abstract

We provide improved lower bounds for two well-known high-dimensional private estimation
tasks. First, we prove that for estimating the covariance of a Gaussian up to spectral error α

with approximate differential privacy, one needs Ω̃
(

d3/2

αε + d
α2

)
samples for any α ≤ O(1), which

is tight up to logarithmic factors [20, 7]. This improves over previous work [21] which established

this for α ≤ O
(

1√
d

)
, and is also significantly simpler. Next, we prove that for estimating the

mean of a heavy-tailed distribution with bounded kth moments with approximate differential
privacy, one needs Ω̃

(
d

αk/(k−1)ε
+ d

α2

)
samples. This matches known upper bounds [23] and

improves over their lower bound [5, 23] which only holds for pure differential privacy.

1 Introduction

Mean and covariance estimation are two of the most fundamental tasks in algorithmic statistics.
Simply put, the goal of these tasks, respectively, are: given i.i.d. samples X1, . . . , Xn from an
unknown distribution D, can we estimate the mean (resp., covariance) of the distribution? This
question is especially worthy of investigation for data in high-dimensional Euclidean space, as this
setting not only captures many real-world data problems, but also has led to numerous theoretically
and practically interesting algorithms.

From the perspective of differential privacy, algorithmic statistics has enjoyed significant work
over the past several years, with numerous papers studying differentially private mean [25, 20, 8, 23,
1, 28, 6, 27, 19, 17, 30, 35, 11, 18, 13, 7] and covariance [25, 3, 20, 8, 1, 29, 22, 26, 4, 35, 21, 12, 18, 2]
estimation in high dimensions. Much of this work has focused on the setting where the samples are
drawn i.i.d. from a Gaussian distribution. This has led to optimal sample complexity bounds for
estimating both identity-covariance Gaussian and arbitrary Gaussians [20, 1, 21] in total variation
distance, as well as matching polynomial-time algorithms [18]. Recently, there has also been work
on “covariance-aware mean estimation”, where one wishes to understand the sample complexity of
estimating the mean of an unknown-covariance Gaussian, and has led to optimal sample complexity
bounds [6] and nearly matching efficient algorithms [13, 7]. Other problems that have been studied
include private mean estimation for heavy tailed distributions [20, 17] and private mean/covariance
estimation for arbitrary bounded data [3, 27, 19, 30, 12].

Despite this large body of work, we still do not have a full understanding of private estimation for
several problems. One such problem is heavy tailed mean estimation with bounded kth moments.
Namely, we are promised that for some fixed constant k ≥ 2, the (high-dimensional) data comes
from a distribution D with unknown mean µ, but with bounded kth moment around µ in every
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direction, i.e., EX∼D |⟨X − µ, v⟩|k ≤ O(1) for every unit vector v ∈ Rd. We wish to privately learn µ̂
such that ∥µ̂−µ∥2 ≤ α. The second is that while we understand the complexity of private Gaussian
covariance estimation up to Frobenius error (which corresponds to the notation of total variation
distance), we do not yet understand complexity for estimation up to Spectral error. In Frobenius
error, given samples from N (µ,Σ), we wish to privately learn some Σ̂ such that ∥Σ−1/2Σ̂Σ−1/2 −
I∥F ≤ α, whereas in spectral error, we wish to privately learn Σ̂ such that ∥Σ−1/2Σ̂Σ−1/2−I∥op ≤ α,
or equivalently, (1− α)Σ ≼ Σ̂ ≼ (1 + α)Σ, where ≼ represents the Loewner ordering.

1.1 This work

In this work, we prove optimal lower bounds for both private heavy-tailed mean estimation and
private Gaussian covariance estimation in spectral norm, matching known upper bounds.

We now state our lower bounds, starting with our result on heavy-tailed mean estimation.

Theorem 1. For some δ = (α·εd )O(1) and any α ≤ O(1), any (ε, δ)-DP algorithm that solves mean
estimation up to error α for heavy-tailed distributions with bounded kth moment in d dimensions
requires sample complexity

n ≥ Ω̃

(
d

α2︸︷︷︸
required even for non-private algorithms

+
d

αk/(k−1)ε

)
.

Theorem 1 improves on the best-known lower bound, which had a matching sample complex-
ity bound but only held for pure-DP algorithms [5, 23]. As pure-DP is more stringent than
approximate-DP, it is more difficult to prove approximate-DP lower bounds: a matching lower
bound is only known for Gaussians and when k = 2 [20, 21]. Moreover, it matches a known al-
gorithm (upper bound) of [23], up to logarithmic factors in d, 1

α ,
1
ε ,

1
δ . Hence, up to logarithmic

factors this essentially completes the picture for private heavy-tailed mean estimation.
Next, we state our lower bound for spectral covariance estimation.

Theorem 2. For some δ = (α·εd )O(1) and any α ≤ O(1), any (ε, δ)-DP algorithm that solves covari-
ance estimation up to spectral error α for Gaussians in d dimensions requires sample complexity

n ≥ Ω̃

(
d

α2︸︷︷︸
required even for non-private algorithms

+
d3/2

αε

)
.

Theorem 2 improves over the best-known lower bound of [21], which had a matching sample
complexity bound but only held for α ≤ O( 1√

d
). Moreover, it matches known algorithms of [20, 7],

up to logarithmic factors in d, 1
α ,

1
ε ,

1
δ . Hence, up to logarithmic factors this essentially completes

the picture for private Gaussian covariance estimation up to spectral error. We also remark that
our proof generalizes Theorem 1.1 in [21] while being considerably simpler.

Finally, Theorem 2 also leads to improved lower bounds for private empirical covariance es-
timation of arbitrary bounded data. Given data points X1, . . . , Xn that are promised to lie in
a d-dimensional ball of radius 1, there is an algorithm that can provide an estimate Σ̂ for the

empirical covariance Σ, up to error ∥Σ̂ − Σ∥F ≲ min
(

d
n ,

d1/4√
n

)
, ignoring polynomial factors in

ε, log 1
δ [31, 14, 12]. The best corresponding lower bound is a matching Ω

(
d
n

)
when n ≥ d2, but is a

worse max
(

1√
n
,
√
d
n

)
for d1/2 ≤ n ≤ d2 [20, 21, 12]. Our proof of Theorem 2 can be used to improve

the lower bound to be a matching Ω
(
d
n

)
for all n ≥ d3/2, and max

(
1

n1/3 ,
√
d
n

)
for d1/2 ≤ n ≤ d3/2.
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2 Proof Overview

Fingerprinting Oveview: Our covariance estimation lower bound is based on the technique of
fingerprinting, used in many other works for privacy lower bounds [10, 16, 32, 15, 33, 34, 9, 20, 21,
24]. We first describe a general approach explaining fingerprinting lower bounds.

Suppose we are trying to estimate a parameter θ that characterizes a distribution Dθ. (For
covariance estimation, θ = Σ and Dθ = N (0,Σ).) We fix a (ε, δ)-DP mechanism M with input
X1, . . . , Xn ∼ Dθ and with output some estimate θ̂. Consider drawing i.i.d. samples X1, . . . , Xn ∼
Dθ and fresh i.i.d. samples X ′

1, . . . , X
′
n ∼ Dθ, and for each index i ∈ [n], define the statistics

Zi := ⟨f(X1, . . . , Xi, . . . , Xn, θ), g(Xi, θ)⟩ and Z ′
i := ⟨f(X1, . . . , X

′
i, . . . , Xn, θ), g(Xi, θ)⟩, (1)

for some fixed functions f, g, where f will depend only on M(X1, . . . , Xn) and θ. The idea is that Z ′
i

is the inner product of two independent quantities (since Xi is not in the set {X1, . . . , X
′
i, . . . , Xn}),

which makes it easier to bound the mean and variance of Z ′
i. Moreover, if M is a private algorithm,

then the distribution of Zi and Z ′
i, even for fixed samples {Xi}, {X ′

i} and θ, are close, which means
the overall distribution of Zi and Z ′

i are similar after removing the conditioning on {Xi}, {X ′
i} and

θ. Hence, we can also bound the distribution of Zi, and thus bound E[Zi].
Conversely, we will show that if M is a reasonably accurate estimator, then E [

∑n
i=1 Zi] will

have to be large compared to our bounds on each E[Zi], unless n is sufficiently large. To actually
prove this, we first carefully choose the functions f and g as well as the prior distribution on the
parameter θ. Then, we prove a “fingerprinting” lemma, which proves if X1, . . . , Xn ∼ Dθ, then
either M(X1, . . . , Xn) is not a good estimate for θ with reasonable probability, or E [

∑n
i=1 Zi] is

large. The main technical difficulties lie in choosing the functions and distributions, and then
proving the fingerprinting lemma.

Covariance Estimation Lower Bound. We will prove a stronger statement: namely, for any
α ≤ O(

√
d), there exists a distribution P on the covariance Σ with the following two properties.

1. With very high probability, Σ ∼ P has all eigenvalues Θ(1).

2. For any (ε, δ)-DP algorithm M(X1, . . . , Xn), if Σ ∼ P and X1, . . . , Xn ∼ N (0,Σ), where

E[∥M(X1, . . . , Xn)− Σ∥2F ] ≤ α, then we must have n ≥ Ω
(
d2

αε

)
.

By setting α′ = α√
d
(so d2

αε = d3/2

α′ε ), this implies that we cannot have ∥M(X1, . . . , Xn)−Σ∥op ≤ α′

with very high probability, and since all eigenvalues of Σ are Θ(1), this implies our desired result.
This holds for any α ≤ O(

√
d), and hence for any α′ ≤ O(1).

The choices of f, g in (1) will be quite simple: we choose f(X1, . . . , Xn,Σ) = M(X1, . . . , Xn)−Σ
and g(Xi) = XiX

⊤
i − Σ, so

Zi := ⟨M(X1, . . . , Xn)− Σ, XiX
⊤
i − Σ⟩ and Z ′

i = ⟨M(X1, . . . , X
′
i, . . . , Xn)− Σ, XiX

⊤
i − Σ⟩.

Using the fact that XiX
⊤
i is an unbiased estimator for Σ, a simple calculation shows that E[Z ′

i] = 0.
Moreover, assuming M is a reasonably good estimator of Σ, we can show V ar(Z ′

i) ≤ 4α2. Next,
(ε, δ)-DP will imply for reasonably small δ that E[Zi] ≤ O(αε) for all i. Hence, E[

∑n
i=1 Zi] ≤

O(n · αε) if M is differentially private and reasonably accurate.
Next, we show a lower bound on E[

∑n
i=1 Zi], assuming M is a sufficiently accurate esti-

mator. This lower bound does not utilize any privacy constraints. Note that E[
∑n

i=1 Zi] =
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n · E[⟨M(X1, . . . , Xn) − Σ, Σ̄ − Σ⟩], where Σ̄ = 1
n

∑n
i=1XiX

⊤
i is the empirical covariance. So,

we want to show this quantity is larger than O(n · αε), which contradicts our above bound, unless

either n ≥ Ω
(

d2

αε

)
or ∥M(X1, . . . , Xn)− Σ∥F > α holds with reasonable probability.

We can rewrite our desired quantity as

E

[
n∑

i=1

Zi

]
= n ·

(
E
〈
M(X1, . . . , Xn)− Σ̄, Σ̄− Σ

〉
+ E

[
∥Σ̄− Σ∥2F

])
. (2)

It is well-known that E
[
∥Σ̄− Σ∥2F

]
= Θ(d

2

n ), and we can also write∣∣E 〈M(X1, . . . , Xn)− Σ̄, Σ̄− Σ
〉∣∣ = ∣∣E 〈M(X1, . . . , Xn)− Σ̄, Σ̄− E[Σ|X1, . . . , Xn]

〉∣∣
≤
√
E∥M(X1, . . . , Xn)− Σ̄∥2F · E∥Σ̄− E[Σ|X1, . . . , Xn]∥2F . (3)

Assuming that M(X1, . . . , Xn) is a good estimator of Σ, it will also be a good estimator of Σ̄, and
E∥M(X1, . . . , Xn)−Σ̄∥2F ≤ α2. We have avoided discussing the prior distribution of Σ, but to bound
E∥Σ̄−E[Σ|X1, . . . , Xn]∥2F , we need to define the prior. The prior that we choose will be an Inverse
Wishart distribution, which is known to be the classic conjugate prior of the Multivariate Gaussian.
What this means is that if the prior distribution of Σ follows an Inverse Wishart distribution and
we sample X1, . . . , Xn ∼ N (0,Σ), the posterior distribution of Σ given X1, . . . , Xn also follows an
Inverse Wishart distribution (with a different parameter setting). This will make it easy to compute
E[Σ|X1, . . . , Xn]. We will choose Σ to be a (scaled) Inverse Wishart distribution with C · d degrees
of freedom for a sufficiently large constant C. With a proper scaling, all of the eigenvalues of Σ will
be between 0.5 and 1.5, and the posterior distribution will have expectation

(
1 +O( dn)

)
· Σ̄. From

this, it is not hard to bound E∥Σ̄ − E[Σ|X1, . . . , Xn]∥2F ≤ O( d
2

n2 ) · E[∥Σ̄∥2F ] = O
(

d3

n2

)
. Combining

this with Equations (2) and (3) and our bound E∥M(X1, . . . , Xn)− Σ̄∥2F ≤ α2, this implies that

E

[
n∑

i=1

Zi

]
= n ·

[
Θ

(
d2

n

)
±O

(√
α2 · d

3

n2

)]
.

As long as α ≤ c
√
d for some small constant c, this implies E[

∑n
i=1 Zi] ≥ Ω(d2). As we already

explained why E[
∑n

i=1 Zi] ≤ O(n·αε), this implies that as long as α ≤ c
√
d, any (ε, δ)-DP algorithm

that can estimate Σ up to Frobenius error α needs O(n · αε) ≥ Ω(d2), or n ≥ Ω
(

d2

αε

)
.

Heavy Tailed Mean Estimation: This result will follow from a simple application of the fact
that privately learning µ up to error α requires Ω( d

αε) samples from N (µ, I) [20]. Specifically,

we will draw a distribution that, with probability αk/(k−1) is drawn as N (µ′, α−2/(k−1) · I) for
some unknown µ′ with ∥µ′∥ ≤ O(α−1/(k−1)). It is straightforward to check that this distribution
has bounded kth moment, and the actual mean, µ = αk/(k−1) · µ′, has norm O(α). However, to
learn µ to error α, one must learn µ′ up to error exactly α−1/(k−1), not just O(α−1/(k−1)). A
minor modification of the lower bound in [20] can show that learning µ′ is essentially equivalent
to learning the mean of identity covariance Gaussian up to error 1. This requires Ω

(
d
ε

)
samples.

However, because only an αk/(k−1) fraction of the points were actually from the Gaussian, we need

Ω
(

d
ε·αk/(k−1)

)
samples in total. This argument can be made formal by converting an instance of

Gaussian estimation into this distribution by padding.
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